基于压缩感知的超分辨率图像重建  被引量:18

Super-resolution image reconstruction algorithms based on compressive sensing

在线阅读下载全文

作  者:樊博[1] 杨晓梅[1] 胡学姝[1] 

机构地区:[1]四川大学电气信息学院,成都610065

出  处:《计算机应用》2013年第2期480-483,共4页journal of Computer Applications

基  金:四川大学青年基金资助项目(2011SCU11061)

摘  要:压缩感知(CS)利用图像稀疏表示的先验知识,从少量的观测值中重建出原始图像。将CS理论应用于单幅图像超分辨率(SR),提出一种基于两步迭代收缩算法和全变分(TV)稀疏表示的图像重建方法。该方法无需任何训练集,仅需单幅低分辨率实现图像重建。算法在测量矩阵里加入下采样低通滤波器以使SR问题满足应用CS理论的有限等距性质;采用TV正则化函数,利用两步迭代法引入TV去噪算子,可以更好地重建图像边缘。实验结果证明,与已有的超分辨率方法相比,在不同的放大倍数下所提方法重建图像视觉效果更好,在峰值信噪比(PSNR)的评价指标上有显著的提高(4~6 dB),且实验证实滤波器的引入决定算法的重建质量。Compressed Sensing (CS) theory can reconstruct original images from fewer measurements using the priors of the images sparse representation. The CS theory was applied into the single-image Super-Resolution (SR), and a new reconstruction algorithm based on two-step iterative shrinkage and Total Variation (TV) sparse representation was proposed. The proposed method does not need an existing training set but the single input low resolution image. A down-sampling low- pass filter was incorporated into measurement matrix to make the SR problem meet the restricted isometry property of CS theory, and the TV regularization method and a two-step iterative method with TV denoising operator were introduced to make an accurate estimate of the image's edge. The experimental results show that compared with the existing super-resolution techniques, the proposed algorithm has higher precision and better performance under different magnification level, the proposed method achieves significant improvement ( about 4 - 6 dB) in Peak Signal-to-Noise Ratio ( PSNR), and the filter plays a decisive role in the reconstruction quality.

关 键 词:超分辨率 压缩感知 全变分 两步迭代 有限等距性质 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象