检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2013年第2期480-483,共4页journal of Computer Applications
基 金:四川大学青年基金资助项目(2011SCU11061)
摘 要:压缩感知(CS)利用图像稀疏表示的先验知识,从少量的观测值中重建出原始图像。将CS理论应用于单幅图像超分辨率(SR),提出一种基于两步迭代收缩算法和全变分(TV)稀疏表示的图像重建方法。该方法无需任何训练集,仅需单幅低分辨率实现图像重建。算法在测量矩阵里加入下采样低通滤波器以使SR问题满足应用CS理论的有限等距性质;采用TV正则化函数,利用两步迭代法引入TV去噪算子,可以更好地重建图像边缘。实验结果证明,与已有的超分辨率方法相比,在不同的放大倍数下所提方法重建图像视觉效果更好,在峰值信噪比(PSNR)的评价指标上有显著的提高(4~6 dB),且实验证实滤波器的引入决定算法的重建质量。Compressed Sensing (CS) theory can reconstruct original images from fewer measurements using the priors of the images sparse representation. The CS theory was applied into the single-image Super-Resolution (SR), and a new reconstruction algorithm based on two-step iterative shrinkage and Total Variation (TV) sparse representation was proposed. The proposed method does not need an existing training set but the single input low resolution image. A down-sampling low- pass filter was incorporated into measurement matrix to make the SR problem meet the restricted isometry property of CS theory, and the TV regularization method and a two-step iterative method with TV denoising operator were introduced to make an accurate estimate of the image's edge. The experimental results show that compared with the existing super-resolution techniques, the proposed algorithm has higher precision and better performance under different magnification level, the proposed method achieves significant improvement ( about 4 - 6 dB) in Peak Signal-to-Noise Ratio ( PSNR), and the filter plays a decisive role in the reconstruction quality.
关 键 词:超分辨率 压缩感知 全变分 两步迭代 有限等距性质
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222