检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林杨[1]
出 处:《福建师范大学学报(自然科学版)》2013年第1期31-35,67,共6页Journal of Fujian Normal University:Natural Science Edition
基 金:国家自然科学基金资助项目(70371064)
摘 要:股票市场存在诸多弊端,如滥用客户信息,价格操纵等.股市监控是金融监管体系中不可缺少的一环,它对市场交易的诚信、公平和公开透明起到重要作用.现有检测交易异常行为的诸多方法中,很少分析股市即日数据并挖掘潜在的交易行为来检测异常.股市是一个复杂的非线性系统,一套可行高效的异常行为检测方法是股市异常行为监控的重要课题.提出一种基于市场微结构的异常交易行为检测方法,该方法能较有效地检测出股市存在的异常交易行为.最后,通过实例说明该方法的可行性和有效性.It is well known that many defects exist in current stock market, such as intorma- tion abuse and price manipulation. Anomaly detection is helpful to enhance the integrity, fairness and transparence of stock market so it becomes a key link in financial regulatory system. Unfortu- nately, existing approaches were low performing as they rarely focused on analyzing the intraday in- formation and mining potential trading behaviors. It proposed a method, which based on market mi- crostructure, to detect abnormal trading behaviors. An experiment was presented demonstrating the feasibility and effectiveness of this approach.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30