检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周绮凤[1] 宁永鹏[1] 周青青[1] 杨帆[1] 雷家艳[2]
机构地区:[1]厦门大学信息科学与技术学院 [2]厦门大学建筑与土木工程学院,福建厦门361005
出 处:《厦门大学学报(自然科学版)》2013年第1期57-62,共6页Journal of Xiamen University:Natural Science
基 金:中央高校基本科研业务费(2010121065)
摘 要:提出了结合随机振动响应互相关函数、小波包分解和支持向量机(support vector machine,SVM)的结构损伤识别方法,计算了相邻测点响应的互相关函数幅值.采用小波包对得到的幅值进行分解,得到各个频带上的总能量;利用各频带上能量值存在的差异性作为输入到分类器的特征向量,训练SVM模型并对结构的损伤进行识别.应用该方法对Benchmark模型结构进行损伤判别,实验通过对比其他基于SVM的方法,结果表明该方法具有较好的识别精度.A structural damage detection method by integrating cross-correlation function,wavelet packet decomposition (WPD) and support vector machine (SVM) was proposed. Cross-correlation functions amplitude were calculated on two acceleration responses which are obtained from two adjacent sensors. Then the processed signals were translate into energy features by WPD,the energy se quences at different bands of frequency were inputted to classifier as feature vectors. Finally,SVM as an effective classifier for small sample set problems was used to detect the multictass damage. The experiment results on a Benchmark model show that the proposed method obtained significantly higher identify accuracy than several other commonly used SVM-based methods.
分 类 号:TP391[自动化与计算机技术—计算机应用技术] O327[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145