基于神经网络分类的异类传感器目标关联算法  被引量:3

A New Target-correlation Algorithm for Heterogeneous Sensors Based on Neural Network Classification

在线阅读下载全文

作  者:孟藏珍[1,2] 袁定波[1] 许稼[3] 彭石宝[1] 王晓军[2] 

机构地区:[1]清华大学电子工程系,北京100084 [2]中国人民解放军空军预警学院,武汉430019 [3]北京理工大学信息与电子学院,北京100081

出  处:《雷达学报(中英文)》2012年第4期399-405,共7页Journal of Radars

基  金:国家自然科学基金项目(61102168)资助课题

摘  要:为解决雷达与高速动态平台上的红外传感器构成的融合系统中,系统误差估计、目标关联紧密耦合难于解决的问题,根据系统误差数值变化特性,该文提出了一种基于模式分类的系统误差补偿与目标关联联合处理的方法。该方法采用BP神经网络进行分类,省略了系统误差补偿环节,简化了融合处理流程,对一定范围内变化的系统误差有较好的容限。实验结果表明,该方法用于文中涉及的两类传感器组成的数据融合系统中,能实现目标正确关联的平均概率大于86%。In the data fusion system composed of radar and infrared sensor installed in high speed of dynamic platform, the system error estimation and target correlation are dependent and are difficult very much. To solve the problem, a new target correlation algorithm based on pattern classification is proposed in the article according to the property of system errors variation. The approach realizes pattern classification by BP neural network. It needn’t estimate the system error and compensate it, and has a tolerance to system error. The experiment shows that the average correct probability for target-correlation in the data fusion between the above two kind of sensors is more than 86%.

关 键 词:数据融合 目标关联 神经网络 分类 

分 类 号:TN953.5[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象