检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《三峡大学学报(自然科学版)》2012年第6期23-27,共5页Journal of China Three Gorges University:Natural Sciences
基 金:国家"十二五"科技支撑计划课题(2012BAK10B04);水利部公益性行业科研专项经费项目(201301058)
摘 要:进行库区帷幕防渗时,为确定合理帷幕范围、渗透系数、厚度和深度,确保帷幕防渗质量和提高经济效益,需要进行渗流量敏感性分析.基于传统BP神经网络,并采用批处理、动量滤波、可变学习速率和遗传算法对之改进,建立网格权重和标准化重要性的关系,确定4种防渗方案中各因素对渗漏量的敏感性大小.对比分析可知,方案4更为经济合理,此方案中影响渗漏量的主要因素为渗透系数,且增加帷幕深度比增加帷幕厚度更为经济有效.While conducting curtain grouting in a reservior bank's anti-seepage project, the sensitivity analysis of seepage is required in order to determine a resonable range, permeability coefficient, thickness and depth of the curtain, thus ensuring the quality of the anti-seepage curtain and improving the economic benefits. The paper uses and improves the traditional BP neural network by using batch processing, momentum filter, vari- able learning rate and genetic algorithm to establish the relationships between mesh weights and the standard- ized importance, and then identifies the sensitivity values of various factors related to seepage discharge of the four anti-seepage schemes. By contrasting and analysing it is show that the scheme 4 seems more economic and reasonable. The most important factor influcing the seepage discharge of this scheme is the permeability coefficient; and increasing the curtain's depth seems more economic and effective than that increasing curtain's thickness.
关 键 词:敏感性分析 渗流量 防渗帷幕 神经网络 遗传算法
分 类 号:TV223.43[水利工程—水工结构工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3