检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:易克传[1,2] 曾其良[1] 张新伟[2] 高连兴[2]
机构地区:[1]安徽科技学院机械与车辆教研室,安徽省凤阳县东华路9号233100 [2]沈阳农业大学工程学院农业机械教研室,沈阳市东陵路120号110161
出 处:《光谱实验室》2013年第1期68-72,共5页Chinese Journal of Spectroscopy Laboratory
基 金:国家自然科学基金资助项目(50775151)
摘 要:为了提高近红外光谱技术在梨的可溶性固形物含量(SSC)检测中的精度和稳定性,对采集的原始光谱进行标准归一化(SNV)预处理,采用联合区间偏最小二乘法(SiPLS)建立了SSC的预测模型;通过交互验证法确定了模型的主成分因子数,以预测时的相关系数(Rp)和预测均方根误差(RMSEP)作为评价指标对模型预测结果进行了分析,并与经典偏最小二乘(PLS)模型、间隔偏最小二乘(iPLS)模型进行了比较。结果表明,利用SiPLS所建的预测模型的最优组合包含21个光谱区间并联合4个子区间和15个主成分因子,其预测集的相关系数和预测均方根误差分别为0.9633和0.203;说明利用近红外光谱结合SiPLS算法可以准确、无损检测梨中可溶性固形物含量。In order to improve the precision and stability of determination of soluble solids content(SSC) in pear by FT-NIR spectroscopy,the collected original spectra of was pretreated by standard normalization(SNV),and prediction medel of SSC was established by synergy interval partial least-squares(SiPLS).The number of SiPLS components was confirmed by the cross-validation,the predict results of SiPLS model were analyzed with correlation coefficient(Rp) and the root mean square error of prediction(RMSEP) as evaluation index,compared with the classical PLS model and interval PLS(iPLS) model.Results showed that the optimal prediction model by SiPLS contained 21spectral interval combined with 4 subinterval and principal component factor was 15,and Rp and RMSEP of prediction were 0.9633 and 0.203,respectively.It is concluded that NIR spectroscopy combining with SiPLS can be applied to accurate and lossless determination of the SSC in pear.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3