基于SiPLS算法的近红外光谱检测梨可溶性固形物含量  被引量:6

Measurement of Soluble Solids Content in Pear by NIR Spectroscopy Based on Synergy Interval Partial Least-Squares

在线阅读下载全文

作  者:易克传[1,2] 曾其良[1] 张新伟[2] 高连兴[2] 

机构地区:[1]安徽科技学院机械与车辆教研室,安徽省凤阳县东华路9号233100 [2]沈阳农业大学工程学院农业机械教研室,沈阳市东陵路120号110161

出  处:《光谱实验室》2013年第1期68-72,共5页Chinese Journal of Spectroscopy Laboratory

基  金:国家自然科学基金资助项目(50775151)

摘  要:为了提高近红外光谱技术在梨的可溶性固形物含量(SSC)检测中的精度和稳定性,对采集的原始光谱进行标准归一化(SNV)预处理,采用联合区间偏最小二乘法(SiPLS)建立了SSC的预测模型;通过交互验证法确定了模型的主成分因子数,以预测时的相关系数(Rp)和预测均方根误差(RMSEP)作为评价指标对模型预测结果进行了分析,并与经典偏最小二乘(PLS)模型、间隔偏最小二乘(iPLS)模型进行了比较。结果表明,利用SiPLS所建的预测模型的最优组合包含21个光谱区间并联合4个子区间和15个主成分因子,其预测集的相关系数和预测均方根误差分别为0.9633和0.203;说明利用近红外光谱结合SiPLS算法可以准确、无损检测梨中可溶性固形物含量。In order to improve the precision and stability of determination of soluble solids content(SSC) in pear by FT-NIR spectroscopy,the collected original spectra of was pretreated by standard normalization(SNV),and prediction medel of SSC was established by synergy interval partial least-squares(SiPLS).The number of SiPLS components was confirmed by the cross-validation,the predict results of SiPLS model were analyzed with correlation coefficient(Rp) and the root mean square error of prediction(RMSEP) as evaluation index,compared with the classical PLS model and interval PLS(iPLS) model.Results showed that the optimal prediction model by SiPLS contained 21spectral interval combined with 4 subinterval and principal component factor was 15,and Rp and RMSEP of prediction were 0.9633 and 0.203,respectively.It is concluded that NIR spectroscopy combining with SiPLS can be applied to accurate and lossless determination of the SSC in pear.

关 键 词:近红外光谱 联合区间偏最小二乘  可溶性固形物含量 

分 类 号:O657.33[理学—分析化学] S123[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象