检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福州大学数学与计算机科学学院,福州350002 [2]福州大学生物科学与工程学院,福州350108 [3]福建省超级计算中心,福州350108
出 处:《小型微型计算机系统》2013年第2期375-379,共5页Journal of Chinese Computer Systems
基 金:福建省自然科学基金项目(2009J01283)资助
摘 要:为了进一步提高基因调控网络构建的精确度,提出一种基于多数据源融合的时延基因调控网络构建算法.该算法基于递归模糊神经网络模型,使用时序互信息估计基因间的转录时延,并限制每个基因的潜在调控基因,从而有效提高建网的效率.在网络结构学习阶段,使用离散多目标粒子群优化(discrete multi-objective particle swarm optimization,dMOPSO)算法实现从时序基因表达数据和CHIP-chip数据共同构建基因调控网络.人工模拟数据和酵母菌细胞周期表达数据的实验结果表明该算法能正确选出潜在的调控基因,从而更加精确地构建基因调控网络.In order to further improve the accuracy of the constructed gene regulation network, this paper puts forward an algorithm to construct time-lagged gene regulation network based on multi-source fusion. Based on recurrent fuzzy neural network model, the algo- rithm estimates transcription delay between genes using time series mutual information and also limits potential regulation genes of each gene, thus effectively improves the efficiency of the constructed network. In the phase of structure learning, the algorithm commonly constructs gene regulation network from time series gene expression data and CHIP-chip data using discrete multi-objective particle swarm optimization (dMOPSO) algorithm. Experimental results on artificial simulation data and yeast cell cycle expression data show that the proposed algorithm can correctly choose potential regulation genes, and thereby more accurately constructs gene regulation network.
关 键 词:基因调控网络 递归模糊神经网络 多数据源融合 时延 时序互信息
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117