检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]滁州学院机械与电子工程学院,安徽滁州239012 [2]安徽大学计算机科学与技术学院,合肥230039 [3]滁州学院计算机与信息工程学院,安徽滁州239012
出 处:《小型微型计算机系统》2013年第2期380-385,共6页Journal of Chinese Computer Systems
基 金:安徽省自然科学基金项目(090412054)资助;安徽高等学校省级自然科学研究项目(KJ2012A212;KJ2011Z276)资助;安徽省高等学校省级优秀青年人才基金项目(2011SQRL123)资助;滁州学院科学研究项目(2010kj014B;2011kj003Z)资助
摘 要:属性约简是粗糙集理论重要研究内容之一,基于可分辨矩阵的属性约简方法需占用大量存储空间,不利于大数据集的处理.为此,引入差别集定义和基于差别集属性约简定义,并指出基于差别集属性约简本质上是在当前差别集中不断寻求关键属性的过程,并给出删除单个条件属性和删除条件属性集两种获取关键属性的属性约简方法,同时证明了这两种属性约简方法是正确的、完备的;进一步,为了获得最小属性约简,采用两个启发式信息来筛选关键属性;在上述基础上,设计基于差别集的启发式属性约简算法.最后,通过实例和实验验证了该算法的有效性和高效性.Attribute reduction is one of important research concept in rough set theory. The method of attribute reduction based on dis- cernibility matrix need more high cost of storage space, and the method is not benefit for the huge data sets. To overcome this short- coming, firstly, the definitions of discernibility set and attribute reduction based on discernibility set are proposed. Secondly, it is pointed that the hypostasis of attribute reduction based on discernibility set is the process of searching the key attributes in the current discernibility set. And then, the two methods of obtaining the key attributes through deleting single condition attribute and condition attribute set are present, and it is proved that the acquired attribute reduction form above two methods are correct and complete. For obtaining minimal reduction, in addition, two heuristic information are used to search the key attributes. Based above, a heuristic at- tribute reduction algorithm based on discernibility set is proposed. Finally, both of theoretical analysis and experimental results show that the algorithm is effective and efficient.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62