Harnack inequality and derivative formula for SDE driven by fractional Brownian motion  被引量:3

在线阅读下载全文

作  者:FAN XiLiang 

机构地区:[1]School of Mathematical Sciences, Beijing Normal University [2]Department of Mathematics, Anhui Normal University

出  处:《Science China Mathematics》2013年第3期515-524,共10页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.11131003 and 10901003);Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20100003110005);the Laboratory of Mathematical and Complex Systems;the Fundamental Research Funds for the Central Universities;Key Project of Chinese Ministry of Education(Grant No.211077)

摘  要:In the paper, Harnack inequality and derivative formula are established for stochastic differential equation driven by fractional Brownian motion with Hurst parameter H < 1/2. As applications, strong Feller property, log-Harnack inequality and entropy-cost inequality are given.In the paper, Harnack inequality and derivative formula are established for stochastic differential equation driven by fractional Brownian motion with Hurst parameter H 1/2. As applications, strong Feller property, log-Harnack inequality and entropy-cost inequality are given.

关 键 词:Harnack inequality stochastic differential equation fractional Brownian motion 

分 类 号:O178[理学—数学] O211.63[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象