检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北林业大学交通学院
出 处:《电站系统工程》2013年第1期15-16,共2页Power System Engineering
基 金:黑龙江省自然科学基金面上项目(E201053);黑龙江省自然科学基金面上项目(E200817)资助
摘 要:火电机组中的回热系统的故障原因复杂,且具有相关联,在深入分析D-S证据理论和神经网络理论的基础之上,将这两种方法进行融合。通过对回热系统典型故障的数据流参数进行分析,先由神经网络进行初步诊断,并将诊断结果处理后作为证据理论的基本可信度分配值,得到最终的诊断结果。经过试验分析表明:该方法能够使得火电机组回热系统故障识别能力得到提高。In thermal power unit,the factors of regenerative system fault is very complexity and also have relativity,so fusing the ANN and D-S evidence theory had been put forward.Through analysis regenerative fault parameters data flow,it take each low-dimension neural network output value as the basic belief assignment value,then through D-S evidence fusing to get the final result.The result shows that,this method could promote the fault diagnosis ability.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249