检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学非线性动力学研究所,西安710049
出 处:《物理学报》2000年第7期1228-1234,共7页Acta Physica Sinica
基 金:国家自然科学基金 !(批准号 :19972 0 5 1)
摘 要:应用广义胞映射图论方法研究常微分方程系统的激变 .揭示了边界激变是由于混沌吸引子与在其吸引域边界上的周期鞍碰撞产生的 ,在这种情况下 ,当系统参数通过激变临界值时 ,混沌吸引子连同它的吸引域突然消失 ,在相空间原混沌吸引子的位置上留下了一个混沌鞍 .研究混沌吸引子大小 (尺寸和形状 )的突然变化 ,即内部激变 .发现这种混沌吸引子大小的突然变化是由于混沌吸引子与在其吸引域内部的混沌鞍碰撞产生的 ,这个混沌鞍是相空间非吸引的不变集 ,代表内部激变后混沌吸引子新增的一部分 .同时研究了这个混沌鞍的形成与演化 .给出了对永久自循环胞集和瞬态自循环胞集进行局部细化的方法 .Crises in systems of ordinary differential equations are investigated by means of Generalized Cell Mapping Digraph (GCMD) method. We show that a boundary crisis results from a collision between a chaotic attractor and a periodic saddle on its basin boundary. In such a case the chaotic attractor, together with its basin of attraction, is suddenly destroyed as the parameter passes through a critical value, leaving behind a nonattracting chaotic saddle in the place of the original chaotic attractor in phase space. We focus here on a sudden change in the size of a chaotic attractor, namely an interior crisis. We demonstrate that at an interior crisis the chaotic attractor collides with a chaotic saddle within its basin of attraction. This chaotic saddle is an invariant and nonattracting set and resembles the new portion of the larger chaotic attractor just after the interior crisis. We also investigate the origin and evolution of the chaotic saddle. The local refining procedures of persistent and transient self cycling sets are given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145