绳正法拨距优化计算方法的研究及应用  被引量:2

Research on Calculation of Move Distance Optimization by String Method and its Application

在线阅读下载全文

作  者:刘永孝[1,2] 刘学毅[2] 杨俊斌[2] 代丰[2] 

机构地区:[1]兰州交通大学土木工程学院,兰州730070 [2]西南交通大学高速铁路线路工程教育部重点实验室,成都610031

出  处:《铁道标准设计》2013年第2期26-29,共4页Railway Standard Design

摘  要:利用不同半径和缓和曲线长度进行组合,比较其拨距的绝对值和的大小,找出拨距绝对值和最小条件下对应的最优拨距。为了分析拨距与曲线半径、缓和曲线长度之间的关系,将优化出的半径和缓和曲线长度进行适当的调整,计算调整后的曲线的拨距值。计算结果表明:此种优化方法在不用调整计划正矢的情况下,直接满足曲线整正的原则,将优化结果和调整缓和曲线长度和半径后的拨距值进行比较,验证了计算结果是最优的,且优化出的半径和缓和曲线长度与曲线既有的要素比较接近,能较好地满足现场对曲线整正的要求,尤其对三无曲线和无缝线路地段曲线更为适用。Different radiuses and different lengths of easement curve were assembled to compare the magnitude of the total absolute value of its move distance, so as to find out the optimal move distance under the condition of the smallest total absolute value of the move distance. In order to analyze the relationship between move distance and curve radius as well as the length of easement curve, the optimized radius and length of easement curve were adjusted appropriately to calculate the move distance of the adjusted curve. The calculation results show that this kind of optimization method can comply with the curve realignment principle. Compared with the move distance resulted from the adjustment of the radius and length of easement curve, the optimized results can be proved to be optimal. And the optimized radius and length of easement curve can approach to the existing curve factors, thereby meeting the requirements for the curve realignment in situ. Especially, it is more applicable to the curve without three main factors and to the curve on the CWR region.

关 键 词:曲线整正 绳正法 计划正矢 拨距优化 

分 类 号:U216.426[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象