基于改进粒子群算法的投资组合模型  被引量:3

Portfolio Model Based on Improved Particle Swarm Optimization Algorithm

在线阅读下载全文

作  者:何光[1] 吴萌[2] 

机构地区:[1]内江师范学院数学与信息科学学院,四川内江641000 [2]四川大学工商管理学院,四川成都610065

出  处:《计算机仿真》2013年第2期209-212,共4页Computer Simulation

基  金:国家自然科学基金项目(71101099)

摘  要:研究最优化处理资产的实际收益率问题,经典的均值—方差模型对于输入参数过于敏感,不能较好的处理真实世界中的实际收益率问题。为了更好的解决上述问题,建立了一种l∞风险函数的双目标投资组合模型。针对模型中目标函数的不连续性,采用了改进的粒子群优化算法进行求解。改进算法在考虑最优和次优位置的基础上,引入了遗传算法中的交叉操作。在仿真中,运用证劵市场中的真实数据分析得出,新模型能够获得比均值—方差模型更小的风险值,同时在实际收益率方面表现更好。The classical mean - variance model is used to study the problem of optimizing the actual return rate of asset, and the problem of the actual return rate can not be well dealt with in real world for the model's extremely sensitivity to input parameters. In order to solve the problem better, a bi - criteria portfolio model based on 1∞ risk function was established. As for the discontinuity of objective function in the model, an improved particle swarm optimization algorithm was chosen to solve it. And considering optimal and suboptimal locations, crossover operations in genetic algorithm were introduced in the algorithm. In simulation experiments, with real data from stocks market it was obtained that the new model has less value at risk than mean -variance model, meanwhile it performs better in the actual return rate.

关 键 词:粒子群优化算法 交叉操作 投资组合 实际收益率 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象