检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陶新民[1] 曹盼东[1] 宋少宇[1] 付丹丹[1]
机构地区:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
出 处:《信息与控制》2013年第1期18-26,共9页Information and Control
基 金:国家自然科学基金资助项目(61074076);中国博士后科学基金资助项目(20090450119);中国博士点新教师基金资助项目(20092304120017)
摘 要:提出了一种基于高斯混合模型核的半监督支持向量机(SVM)分类算法.通过构造高斯混合模型核SVM分类器提供未标示样本信息,使得SVM算法在学习标示样本信息的同时,能够兼顾整个训练样本集合的聚类假设.实验部分将该算法同传统SVM算法、直推式支持向量机(TSVM)以及随机游走(RW)半监督算法进行分类性能比较,结果证明该算法在拥有较少标示样本训练的情况下分类性能也有所提高且具有较高的鲁棒性.The semi-supervised support vector machine(SVM) classification algorithm based on Gauss mixture model kernel is proposed. The unlabeled samples information is provides by constructing the Gauss mixture model kernel SVM classifier. The SVM algorithm is not only study labeled samples information, at the same time, it also can take into account the cluster assumption throughout the training sample set. The comparative experiments are performed with the traditional SVM, transductive SVM and random walk semi-supervised algorithms. The experimental results show that the proposed method not only can improve performance of SVM classification in few training samples, can also increase the overall robust performance.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145