检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学控制科学与工程系,黑龙江哈尔滨150001
出 处:《电子学报》2013年第1期29-34,共6页Acta Electronica Sinica
基 金:国家自然科学基金(No.61174016;No.61171197)
摘 要:本文提出基于感知字典的迭代硬阈值(SDIHT)算法,以此协同构造压缩感知中测量矩阵与重建算法.将成对测量矩阵与感知字典分别用于压缩投影和构造重建算法,重建迭代至残差为零,从而精确恢复原始稀疏信号.本文证明了SDIHT算法精确恢复原始稀疏信号的充分条件.SDIHT算法的优点是重建精度高和计算复杂度低.仿真实验表明,当信号稀疏度或测量次数相同时,相比IHT、OMP和BIHT算法,SDIHT算法重建0-1稀疏信号和二维图像效果更好、算法效率更高.This paper proposes a novel Sensing Dictionary-based Iterative Hard Thresholding(SDIHT) algorithm,which can collaboratively construct the measurement matrix and the reconstruction algorithm in compressive sensing.Pairs of measurement matrix and sensing dictionary are used for compressive projection and designing reconstruction algorithm respectively.The original sparse signal can be recovered exactly until the residual is reduced to zero as iteration proceeds.A sufficient condition for SDIHT algorithm is given and proved.The benefit of SDIHT is its high reconstruction accuracy and low computational complexity.Computer simulation indicates that when the signal sparsity or the measurement number is fixed,SDHIT algorithm can reconstruct 0-1 sparse signal and two dimensional images with better performance and higher efficiency than IHT,OMP and BIHT algorithm can.
分 类 号:TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3