检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学深空探测基础研究中心 [2]中国人民解放军61345部队
出 处:《哈尔滨工业大学学报》2013年第1期35-40,共6页Journal of Harbin Institute of Technology
基 金:国家自然科学基金资助项目(61174201);国家重点基础研究发展计划资助项目(2012CB720000)
摘 要:单位四元数作为姿态描述参数具有全局非奇异、运动学方程线性的优点,但其归一化约束必须精确保持.针对这一问题,提出一种飞行器姿态确定的非线性约束滤波算法.首先,通过比较四元数先验和后验估计值的范数大小,证明乘性扩展卡尔曼滤波算法难以获得姿态最优约束解.然后,将QUEST算法与乘性卡尔曼滤波算法有效结合起来,建立一个广义的二次约束优化目标函数;状态预测阶段利用姿态及其方差传播模型来修正目标损失函数,测量更新阶段则通过求解特征值/特征矢量问题,全局显性保持了四元数的归一化约束,避免了扩展卡尔曼滤波的局部线性化近似.数学仿真对所提出算法的精度、稳定性和收敛性能进行了验证,并与乘性扩展卡尔曼滤波算法进行了比较.A major advance of using the quaternion to describe body orientation is that the kinematics equation is linear and the quaternion is also globally nonsingular.However,the algebraic constraint of unit norm needs to be maintained.An improved nonlinear constrained filter algorithm is proposed for the spacecraft attitude estimation problem subject to a unit quaternion norm constraint.First,by comparing the quaternion norm of a priori and a posteriori estimate,it is proved that the Multiplicative Extended Kalman filter can not gain the optimal solution under nonlinear constraint.Then,a generalized quadratically constrained optimization object function is developed by effective combination of QUEST algorithm and Multiplicative Kalman filter.During the predicting state,the attitude and its covariance propagation models are used to modify the cost function.During the measurement update phase,the quaternion normalization is explicitly maintained in a globally optimal manner by solving the eigenvalue-eigenvector problem and therefore the local linearization is avoided.Compared with the Multiplicative Extended Kalman filter,numerical simulation result demonstrates the precision,stability and convergence of the presented algorithm.
关 键 词:姿态估计 四元数归一化 乘性扩展卡尔曼滤波 约束估计
分 类 号:V448.22[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3