检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:XU Miao LU Lu MAO BeiBei Lü Xiang WU XueSong LI Lei LIU DePei
出 处:《Chinese Science Bulletin》2013年第9期979-985,共7页
基 金:supported by the National Basic Research Program of China (2011CB965203);the National Natural Science Foundation of China (31030026 and 31021091)
摘 要:DNA double-strand breaks are repaired through either non-homologous end joining(NHEJ) or homologous recombination repair(HRR) pathway.The well-characterized regulatory mechanisms of double-strand break repair(DSBR) are mainly found at the level of complicated repair protein interactions and modifications.Regulation of DSBR at the transcriptional level was also reported.In this study,we found that DSBR can be regulated by miR-34a at the post-transcriptional level.Specifically,miR-34a,which can be activated by DNA damages,represses DSBR activities by impairing both NHEJ and HRR pathways in cultured cells.The repression is mainly through targeting the critical DSBR promoting factor SIRT1,as ectopically expressed SIRT1 without 3'-UTR can rescue the inhibitory roles of miR-34a on DSBR.Further studies demonstrate that SIRT1 conversely represses miR-34a expression.Taken together,our data show that miR-34a is a new repressor of DSBR and the mutual inhibition between miR-34a and SIRT1 may contribute to regulation of DNA damage repair.DNA double-strand breaks are repaired through either non-homologous end joining (NHEJ) or homologous recombination repair (HRR) pathway. The well-characterized regulatory mechanisms of double-strand break repair (DSBR) axe mainly found at the level of complicated repair protein interactions and modifications. Regulation of DSBR at the transcriptional level was also reported. In this study, we found that DSBR can be regulated by miR-34a at the post-transcriptional level. Specifically, miR-34a, which can be activated by DNA damages, represses DSBR activities by impairing both NHEJ and HRR pathways in cultured cells. The repression is mainly through targeting the critical DSBR promoting factor SIRT1, as ectopically expressed SIRT1 without 3'-UTR can rescue the inhibitory roles of miR-34a on DSBR. Further studies demonstrate that SIRT1 conversely represses miR-34a expression. Taken together, our data show that miR-34a is a new repressor of DSBR and the mutual inhibition between miR-34a and SIRT1 may contribute to regulation of DNA damage repair.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30