Analyses of a Glycine max Degradome Library Identify microRNA Targets and MicroRNAs that Trigger Secondary SiRNA Biogenesis  被引量:6

Analyses of a Glycine max Degradome Library Identify microRNA Targets and MicroRNAs that Trigger Secondary SiRNA Biogenesis

在线阅读下载全文

作  者:Zheng Hu Qiyan Jiang Zhiyong Ni Rui Chen Shuo Xu Hui Zhang 

机构地区:[1]The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences [2]Central Laboratory of Tianjin Academy of Agricultural Sciences

出  处:《Journal of Integrative Plant Biology》2013年第2期160-176,共17页植物学报(英文版)

基  金:supported by the National High-Tech Research and Development Program of China (2007AA10Z139)

摘  要:Plant microRNAs (miRNAs) regulate gene expression mainly by guiding cleavage of target mRNAs. In this study, a degradome library constructed from different soybean (Glycine max (L.) Merr.) tissues was deep-sequenced. 428 potential targets of small interfering RNAs and 25 novel miRNA families were identified. A total of 211 potential miRNA targets, including 174 conserved miRNA targets and 37 soybean- specific miRNA targets, were identified. Among them, 121 targets were first discovered in soybean. The signature distribution of soybean primary miRNAs (pri-miRNAs) showed that most pri-miRNAs had the characteristic pattern of Dicer processing. The biogenesis of TAS3 small interfering RNAs (siRNAs) was conserved in soybean, and nine Auxin Response Factors were identified as TAS3 siRNA targets. Twenty- three miRNA targets produced secondary small interfering RNAs (siRNAs) in soybean. These targets were guided by five miRNAs: gma-miR393, gma-miR1508, gma-miR1510, gma-miR1514, and novel-11. Multiple targets of these secondary siRNAs were detected. These 23 miRNA targets may be the putative novel TAS genes in soybean. Global identification of miRNA targets and potential novel TAS genes will nnntrihnltp, tn r~__~nrP.h nn th~ f, mP.tinn_~ nf miRNA~ in ~nvh^nPlant microRNAs (miRNAs) regulate gene expression mainly by guiding cleavage of target mRNAs. In this study, a degradome library constructed from different soybean (Glycine max (L.) Merr.) tissues was deep-sequenced. 428 potential targets of small interfering RNAs and 25 novel miRNA families were identified. A total of 211 potential miRNA targets, including 174 conserved miRNA targets and 37 soybean- specific miRNA targets, were identified. Among them, 121 targets were first discovered in soybean. The signature distribution of soybean primary miRNAs (pri-miRNAs) showed that most pri-miRNAs had the characteristic pattern of Dicer processing. The biogenesis of TAS3 small interfering RNAs (siRNAs) was conserved in soybean, and nine Auxin Response Factors were identified as TAS3 siRNA targets. Twenty- three miRNA targets produced secondary small interfering RNAs (siRNAs) in soybean. These targets were guided by five miRNAs: gma-miR393, gma-miR1508, gma-miR1510, gma-miR1514, and novel-11. Multiple targets of these secondary siRNAs were detected. These 23 miRNA targets may be the putative novel TAS genes in soybean. Global identification of miRNA targets and potential novel TAS genes will nnntrihnltp, tn r~__~nrP.h nn th~ f, mP.tinn_~ nf miRNA~ in ~nvh^n

关 键 词:miRNAs miRNA targets secondary siRNAs DEGRADOME Glycine max. 

分 类 号:Q943.2[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象