检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《传感器与微系统》2013年第3期72-73,77,共3页Transducer and Microsystem Technologies
基 金:重庆市重点科技攻关项目(CSTC;2011AB6054)
摘 要:提出了加强学习与联想记忆的粒子群优化算法,并将该算法应用到无线传感器网络的节点定位中。在RSSI模型测距产生的不同误差情况下,分别比较极大似然估计法和加强学习与联想记忆的粒子群优化算法产生的定位误差、定位方差,证明了加强学习与联想记忆的粒子群优化算法是一种收敛快、精度高、稳定性好的优化算法,适合应用在无线传感器网络节点定位中。A strengthen learning and associative memory particle swarm optimization (SLAM-PSO)algorithm is presented, and the algorithm is applied to node localization in wireless sensor networks (WSNs). With different ranging error based on RSSI model, comparing the localization error and localization variance generated by maximum likelihood estimation method and SLAM-PSO algorithm, and it proves that the SLAM-PSO algorithm is a fast convergence ,high precision, good stability optimization algorithm, and it is suitable for application in WSNs node positioning.
关 键 词:加强学习与联想记忆的粒子群优化算法 节点定位 接收信号强度指示测距模型 极大似然估计法
分 类 号:TP212.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.81