检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京大学深港产学研基地深圳市系统芯片设计(SOC)重点实验室,广东深圳518057
出 处:《计算机工程与应用》2013年第5期1-3,7,共4页Computer Engineering and Applications
基 金:国家自然科学基金重点项目(No.60936005);深圳市杰青项目(No.JC201005280670A)
摘 要:多频测试使模拟电路响应的故障状态和正常状态差异最大化,而神经网络具有解决复杂分类问题的能力。结合两者优点,提出一种基于多频测试和神经网络的故障诊断方法:通过灵敏度分析指导多频测试矢量生成,选择最优测试激励;提取各测试节点响应的故障信息,利用神经网络对各种状态下的特征向量进行分类决策,实现对故障元件的检测和定位。实验结果表明,该方法对模拟电路故障诊断非常有效,具有很强的实用性。Multifrequency test can maximize differences between the failure state and the normal state of the analog circuit' s response, and Neural Networks (NNs) have the ability to solve complex classification problems. An efficient approach for diagnosing faults in analog circuits is presented. It is based on the advantages of both multifrequency test and NNs. The sensitivity analysis is used to generate and choose the multifrequency test vectors of the Circuit Under Test(CUT). Fault features of the test point in CUT are extracted and fused. NNs are used to classify the features in a variety of state for the detection and location of faulty components in CUT. The experimental results show that this method is very effective and highly practical for fault diagnosis of analog circuits.
关 键 词:多频测试 神经网络 模拟电路 故障诊断 测试矢量生成
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.207.126