检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学电子信息工程学院,江苏南京210016 [2]南京信息工程大学气象灾害省部共建教育部重点实验室,江苏南京210044
出 处:《信号处理》2013年第2期143-151,共9页Journal of Signal Processing
基 金:国家自然科学基金项目(60872065);气象灾害省部共建教育部重点实验室(南京信息工程大学)开放基金项目(KLME1108);光电控制技术重点实验室和航空科学基金联合资助项目(20105152026);计算机软件新技术国家重点实验室(南京大学)开放基金项目(KFKT2010B17);江苏高校优势学科建设工程资助项目
摘 要:现有的基于Shannon熵的阈值选取方法存在无定义值和零值的缺陷,并且没有考虑目标和背景类内灰度的均匀性。为此,本文针对多目标(背景)图像分割问题,提出了基于最大倒数熵/倒数灰度熵和自适应双粒子群优化(Adaptive Chaotic Variation Particle Swarm Optimization,ACPSO)的多阈值选取方法。首先将最大倒数熵单阈值选取推广到多阈值选取;然后定义了倒数灰度熵,导出了基于最大倒数灰度熵的单阈值和多阈值选取公式;最后给出最大倒数熵/倒数灰度熵多阈值选取的ACPSO算法步骤,实现对多个阈值快速精确地寻优。实验结果表明,与现有的同类方法—基于最大Shannon熵和粒子群优化(Particle Swarms Optimization,PSO)的多阈值选取方法相比,本文提出的方法有明显的优势,已应用于红外弱小目标检测中的阈值分割和卫星云图识别中的数字云图分割,取得了极佳的分割效果。The existing threshold selection methods based on Shannon entropy have the defects of undefined value and zero value, and they do not consider the uniformity of the gray scale within the object cluster and background cluster. In view of the above problems, the methods of multi-threshold selection based on maximum reciprocal entropy reciprocal gray entropy and adaptive chaotic variation particle swarm optimization (ACPSO) are proposed for images including multiple objects or backgrounds in this paper. Firstly, the method of single threshold selection based on maximum reciprocal entropy is extended to multihreshold selection. Then, reciprocal gray entropy is defined. The formulae of single threshold selection and multi-threshold selection based on maximum reciprocal gray entropy are derived. Finally, tofind the optimal multiple thresholds quickly and accurately, the algorithm steps of multi-threshold selection based on reciprocal entropy / reciprocal gray entropy and ACPSO are given. The experimental results show that, compared with the existing related method, which is the method of multi-threshold selection based on maximum Shannon entropy and particle swarms optimization ( PSO), the methods proposed in this paper have obvious advantages. Moreover, the methods have been used for image segmentation in infrared small target detection and satellite cloud image recognition, and they have excellent segmentation effect.
关 键 词:图像分割 阈值选取 倒数熵 倒数灰度熵 多阈值 自适应双粒子群优化
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.161