检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电气技术》2013年第2期14-18,共5页Electrical Engineering
摘 要:电能质量扰动识别时,采用小波变换提取能量分布特征时小波分解层数通常缺乏理论依据,且采用支持向量机(SVM)分类时训练样本通常只含某一种信噪比(SNR)的噪声。针对以上两个问题,利用小波变换对电能质量扰动信号进行多分辨率分析时,根据扰动信号的采样率来确定小波分解层数,提取小波能量分布差特征作为SVM的输入向量,减少了计算量和特征维数;采用信噪比在较大范围内分布较均匀的训练样本来训练SVM,增强了SVM的范化能力。仿真实验表明,该方法提高了电能质量扰动识别准确率;在20dB噪声条件下,该方法对6种电能质量扰动的识别准确率仍达到95.20%。In the process of power quality disturbances identification, the wavelet decomposition level usually lack theoretical basis when using wavelet transform to extract energy difference distribution features and training samples for support vector machine (SVM) are usually in one condition of signal-noise ratio (SNR). For the above two questions, the wavelet decomposion level is decided by signal sampling rate when using wavelet doing multi-resolution analysis, which reduces the calculation time and the number of characteristic dimension, then the extracted energy distribution features are used as the input vector of SVM to train a SVM based classifier; Uniform SNR distribution is employed for training samples and enforces the generalization ability of SVM. The simulation results indicate that this improved method can accurately classify 6 types of PQ disturbances and the accuracy can still reach 95.20% even the SNR is 20dB.
关 键 词:电能质量 扰动识别 小波变换 能量分布 支持向量机
分 类 号:TM714[电气工程—电力系统及自动化] TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.235