检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《公路交通科技》2013年第3期118-124,共7页Journal of Highway and Transportation Research and Development
基 金:国家自然科学基金项目(50808064);河北省自然科学基金项目(E2011202073)
摘 要:运用系统分析方法和博弈理论,通过对政府进行公交站设置、公交企业运营、出行者出行方式及公交线路与站点选择的目标追求与博弈分析,将研究对象转化为具有弹性需求的公交站点优化选择的双层规划问题,建立上层政府和公交企业在有限候选站中选择设置公交站点以追求总出行成本最小化、公交车辆运营成本最小化、公交出行量最大化,下层出行者在各种出行方式及线路与公交站中选择以追求广义出行成本最小化的双层规划模型,具体采用遗传算法优化求解。例子的仿真计算表明,采用双层规划进行有限候选公交站设置的方法考虑到了不同决策主体的博弈行为和公交站选择的实际约束,证明了该方法的正确性与可行性。With system analysis method and game theory, by discussing the goal and game analysis of governmental locating of urban bus stops, operation of transit enterprises, and travelers' choosing of travel mode, transit line and bus stop, the research object is transformed to solve bi-level programming problem for optimized locating urban bus stop with elastic demand, and the bi-level programming model is established. The upper level goal of the government and transit enterprises for locating stop in finite possibly selected bus stops is to minimize the total travelers' travel cost, to minimize the bus operating cost, and to maximum the public transport volume. The lower level goal of the travelers for choosing travel mode, transit lines and their concrete bus stop is to minimize the users' generalized travel cost. Genetic algorithm is adopted in the concrete optimization course for solution. The simulation result of the example indicates that the game analysis of different decision agents and the concrete restriction of bus stop locating are considered by using bi-level programming method for finite possibly selecting bus stops. The feasibility and correctness of the method are proved.
关 键 词:交通工程 双层规划 系统分析 博弈理论 弹性需求 广义费用 遗传算法
分 类 号:U492.11[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225