基于神经网络技术的管道机电阻抗健康状况定量评估研究  被引量:4

Study of Electromechanical Impedance Quantitative Evaluation for Pipeline Structure Based on Neural Network Technique

在线阅读下载全文

作  者:何存富[1] 杨申[1] 刘增华[1] 焦敬品[1] 宋国荣[1] 吴斌[1] 

机构地区:[1]北京工业大学机电学院,北京100124

出  处:《实验力学》2013年第1期20-26,共7页Journal of Experimental Mechanics

基  金:NSFC-RGC联合资助项目(60831160523);国家自然科学基金项目(50975006;51075012;11172014);北京市自然科学基金(1122007);北京市教委科技计划(KM201010005003);北京市科技新星计划(2008A015)

摘  要:将机电阻抗法用于管道法兰和主干结构健康监测,并利用BP神经网络对结构损伤进行定量评估。首先实验研究了管道法兰与主干结构健康状况对阻抗谱的影响,不同的结构损伤可通过阻抗分析仪测量的阻抗实部谱变化反映出来;然后利用BP神经网络技术对管道不同工况下得到的阻抗实部谱进行定量分析。采用阻抗值实部作为输入样本对神经网络进行训练,并使用受训的神经网络实现了对管道中不同结构损伤状况的定量评估。研究结果表明,将机电阻抗法与神经网络数据处理技术结合起来用于复杂管道的结构健康监测,不仅可实现对不同类型损伤的定量评估,同时还具有较高的稳定性。Electromechanical impedance method was adopted to monitor the health condition of flange and main body of pipeline structure, furthermore, BP neural network was used to evaluate structure damage quantitatively. In experiment, the influence of health condition of flange and pipeline structure main body on the impedance spectra was studied firstly, then, the variation of real parts of impedance spectra obtained from impedance analyzer can characterize the different kinds of structure damage. BP neural network technique was used to quantitatively analyze the real parts of impedance spectrum under pipeline structure different working conditions. The real part of impedance spectra were selected as input samples to train developed neural network, finally, the trained neural network can achieve the quantitative evaluation of different kinds of damage in pipeline structure. Results show that the combination of electromechanical impedance method and neural network data processing technique for structural health monitoring of complex pipeline structure not only can effectively achieve quantitative evaluation of different kinds of defect but also have high stability.

关 键 词:神经网络 机电阻抗法 管道 法兰 结构健康监测 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象