检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学电机系,北京100084
出 处:《电力系统自动化》2000年第22期9-12,51,共5页Automation of Electric Power Systems
基 金:国家重点基础研究专项经费资助!(G1 9980 2 0 31 1 )
摘 要:在分析了系统边际价格 ( SMP)形成机理和影响因素的基础上 ,分别提出了基于累计式自回归滑动平均模型 ( ARIMA)和人工神经网络 ( ANN)的 SMP预测方法 ,在这 2种方法中都引入了市场供求指数 ( SDI)作为影响 SMP的因素。通过对某省级发电市场真实数据的仿真结果表明 ,在引入 SDI后 ,ARIMA模型和 ANN模型的预测精度都得到了提高 ;同时 ,ANN模型比 ARIMA模型更易于处理多种市场因素 ,若在模型中考虑更多的市场因素 ,则The characteristics of system marginal price SMP are discussed according to economic theory.After that,two basic forecasting models of SMP are proposed based on auto- regression integrated moving- average ARIMA and artificial neural networks ANN respectively.A new factor named supply- demand index SDI ,reflecting the market balance of supply and demand,is taken into consideration in both models.Numerical result shows that the precision of these forecasting models is greatly improved after introducing SDI into the models.It is concluded that ANN is more flexible than ARIMA to deal with market factors in such cases.Moreover,more accurate forecasting results can be reached by taking more market factors into consideration.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.86.150