电力市场中的边际电价预测  被引量:68

SYSTEM MARGINAL PRICE FORECASTING IN ELECTRICITY MARKET

在线阅读下载全文

作  者:黄日星[1] 康重庆[1] 夏清[1] 

机构地区:[1]清华大学电机系,北京100084

出  处:《电力系统自动化》2000年第22期9-12,51,共5页Automation of Electric Power Systems

基  金:国家重点基础研究专项经费资助!(G1 9980 2 0 31 1 )

摘  要:在分析了系统边际价格 ( SMP)形成机理和影响因素的基础上 ,分别提出了基于累计式自回归滑动平均模型 ( ARIMA)和人工神经网络 ( ANN)的 SMP预测方法 ,在这 2种方法中都引入了市场供求指数 ( SDI)作为影响 SMP的因素。通过对某省级发电市场真实数据的仿真结果表明 ,在引入 SDI后 ,ARIMA模型和 ANN模型的预测精度都得到了提高 ;同时 ,ANN模型比 ARIMA模型更易于处理多种市场因素 ,若在模型中考虑更多的市场因素 ,则The characteristics of system marginal price SMP are discussed according to economic theory.After that,two basic forecasting models of SMP are proposed based on auto- regression integrated moving- average ARIMA and artificial neural networks ANN respectively.A new factor named supply- demand index SDI ,reflecting the market balance of supply and demand,is taken into consideration in both models.Numerical result shows that the precision of these forecasting models is greatly improved after introducing SDI into the models.It is concluded that ANN is more flexible than ARIMA to deal with market factors in such cases.Moreover,more accurate forecasting results can be reached by taking more market factors into consideration.

关 键 词:电力市场 系统边际电价 预测 人工神经网络 

分 类 号:F224[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象