检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学先进焊接与连接国家重点实验室,哈尔滨150001
出 处:《焊接学报》2013年第3期45-48,115,共4页Transactions of The China Welding Institution
基 金:国家自然基金资助项目(51175113;51105033);国际合作项目(2007DFR70070)
摘 要:当今的无损检测领域中,缺陷性质的识别是检测的难点,为此研究了一种基于多探头源数据融合的焊缝缺陷识别新方法.该方法通过对多探头信息的融合,提高了检测结果的可靠性及缺陷识别的准确性.选用两个不同入射角度的斜探头对含有气孔、夹渣、裂纹、未焊透和未熔合五类典型焊接缺陷的焊件分别进行了检测,提取缺陷的超声回波信号特征,构建基于特征层和决策层两级融合的多探头源缺陷智能识别分类器,实现五类焊缝缺陷的多源数据融合识别.在特征融合层采用了BP神经网络作为特征融合器,并利用其融合输出构建每个探头源的基本概率分布函数及其对每类缺陷的基本概率赋值.在决策融合层利用D-S证据理论,合并每个探头源的基本概率分布函数,实现缺陷的融合智能识别.结果表明,该方法融合了多探头源的互补信息,有效的提高了缺陷的识别率,有助于焊缝质量的评定.The recognition of defections is still a difficulty in non-destructive testing field.A new method for recognition of weld defects based on multi-probe source data fusion was proposed in this paper,which improved the reliability of detection and accuracy of defection recognition.Several welds,containing defects of hole,slag and crack,lack of penetration and lack of fusion were respectively inspected by two probes which possessed different angles of incidence.Then the ultrasonic signal features of defect echo were extracted.Finally,an intellectualized pattern classifier with two-level feature fusion and decision fusion was developed to realize the defect recognition with data fusion.BP neural network was selected as the classifier of feature fusion to obtain the basic probability function of each probe and probability value of each type of defect.Then D-S evidential theory was used to combine the probability function of each probe and to carry out the defect recognition.The results show that the multi-probe information could be effectively fused,and the recognition rate of weld defect was improved.
关 键 词:超声检测 缺陷识别 数据融合 神经网络 D—S证据理论
分 类 号:TG115.28[金属学及工艺—物理冶金]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.159.13