检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学》2013年第3期271-274,282,共5页Computer Science
基 金:国家自然科学基金(61050004);国家自然科学基金资助项目(61272015);河南省重大科技攻关项目(102102310058)资助
摘 要:根据可变精度粗糙集的β-上、下分布约简算法的优势,结合概念格形式背景的特点,将二者有机地结合,提出了基于变精度粗糙集的概念格约减算法。分析了变精度粗糙集模型中的β值的选取算法、可辨识矩阵属性约简,以及传统算法中存在的问题,并进行了改进。最后,为了验证改进后算法的有效性,设计了基于变精度粗糙集的概念格生成系统,通过一个实例演示了构造概念格的整个过程,并通过实验证明了算法的有效性。The algorithm of concept lattice reduction based on variable precision rough set was proposed by combining the algorithms of β-upper and lower distribution reduction in variable precision rough set with the characteristics of the formal context in concept lattice. The traditional algorithms about β value select algorithm,attribute reduction based on discernibility matrix in VPRS were discussed. There are defects in these traditional algorithms which are improved. Fi- nally, the generation system of concept lattice based on variable precision rough set was designed to verify the validity of the improved algorithm. And a case demonstrates the whole process of concept lattice construction. The experimental results indicate that this algorithm has great validity.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.170.222