检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李韧[1] 杨丹[2] 胡海波[2] 谢娟[2] 吴云松[1] 傅鹂[2]
机构地区:[1]重庆大学计算机学院,重庆市400044 [2]重庆大学软件学院,重庆市400044
出 处:《重庆大学学报(自然科学版)》2013年第2期56-62,84,共8页Journal of Chongqing University
基 金:国家自然科学基金重点资助项目(91118005);国家自然科学基金青年科学基金资助项目(51005260);重庆市自然科学基金重点项目(CSTC-2011BA2022)
摘 要:为解决传统推理引擎在进行大规模OWL本体数据的SWRL规则推理时存在的计算性能和可扩展性不足等问题,提出了云计算环境下的SWRL规则分布式推理框架CloudSWRL。根据SWRL规则语义,并以Hadoop开源云计算框架为基础,设计了OWL本体在HBase分布式数据库中的存储策略,定义了SWRL规则解析模型和相关推理中间数据模型,提出了在DL-safe限制下基于MapReduce的SWRL规则分布式推理算法。实验结果表明,在对大规模OWL本体进行SWRL规则推理时,CloudSWRL框架在计算性能和可扩展性方面均优于传统推理引擎。With the explosion of semantic web technologies, large amounts of OWl. ontologies are common place. Conventional rule engines inevitably meet the bottleneck of computing performance and sealability. A cloud computing based SWRL distributed reasoning framework named CloudSWRL is proposed. Based on the Hadoop open-source framework and SWRL semantics, the storage schema for OWL ontologies is designed to implement efficient data retrieving from HBase. Some novel data models for SWRL rules and intermediate data are defined. At last, a MapReduce paradigm based distributed SWRL reasoning algorithm is proposed under DL-safe restriction. An experiment on a simulation environment shows our framework is more efficient and sealable than conventional rule engines when reasoning over large-scale of OWL data.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30