检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张昀[1] 周湶[1] 任海军[2] 孙才新[1] 伍科[1] 马小敏[1]
机构地区:[1]重庆大学输配电装备及系统安全与新技术国家重点实验室,重庆400044 [2]重庆大学软件学院,重庆400044
出 处:《重庆大学学报(自然科学版)》2013年第2期69-74,共6页Journal of Chongqing University
基 金:国家自然科学基金资助项目(50607023)基于时空数据挖掘的配电网负荷预测模型及方法研究;国家创新研究群体基金资助项目(51021005)
摘 要:负荷历史数据由于各种原因含有一定的坏数据,在进行高精度的电力负荷预测或系统分析前必须对历史数据进行预处理。本文采用基于加权核函数的模糊C均值聚类的改进算法—WKFCM,以核诱导距离的简单两项和替代欧氏距离作为聚类目标公式的不相似性测度函数,减小了计算复杂度。对数据进行聚类之后,采用收敛速度快、模式分类能力强的超圆神经元网络数据辨识模型,并对识别出的坏数据进行修正,实例证明本文提出的数据处理模型具有较好的效果。There is a number of bad data in the load database produced, thus the data must be cleaned before it is used to forecasting electric load or performing power system analysis. The WKFCM measures distance by kernel functions instead of the complicated Euclidean distance and this kernel based distance is used as dissimilarity function of target clustering formula which can reduce the calculation complexity. After the clustering, a super circle covering neural network based identification model for load data is proposed, and the bad data is modified. It is proved that the proposed data processing model has good effect.
关 键 词:模糊C均值聚类 超圆神经网络 不良数据检测与辨识 电力系统负荷预测
分 类 号:TM734[电气工程—电力系统及自动化] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7