基于FARIMA-GARCH模型的网络业务预测算法  被引量:7

Network traffic prediction based on FARIMA-GARCH model

在线阅读下载全文

作  者:杨双懋[1,2] 郭伟[2] 唐伟[2] 

机构地区:[1]电子信息控制重点实验室,四川成都610036 [2]电子科技大学通信抗干扰技术国家级重点实验室,四川成都611731

出  处:《通信学报》2013年第3期23-31,共9页Journal on Communications

基  金:国家自然科学基金资助项目(61271168;61001085);国家科技重大专项基金资助项目(2010ZX03005-002);国家重点基础研究发展计划("973"计划)基金资助项目(2009CB320405);The National Natural Science Foundation of China(61271168;61001085)~~

摘  要:针对网络流量的波动性与自相似特性为其精确预测提出的挑战,提出了一种基于FARIMA-GARCH模型的预测算法。该算法首先利用分段双向CUSUM检测算法对流量序列的均值进行有效检测,并在此基础上将序列零均值化;然后采用限定搜索法对分数差分阶数进行精确估计;在获得模型参数后,使用FARIMA-GARCH模型对网络流量进行预测。仿真实验表明,限定搜索法能够获得比传统算法更高的估计精度。随后采用真实网络流量验证了预测算法的性能,在保持与FARIMA预测算法等价的时间复杂度下,其均方根和相对均方根误差与RBF神经网络预测算法相当,而高于FARIMA预测算法。同时,预测算法对突发流量的跟踪和预测性能明显优于对比算法,且有更好的区间估计性能。The volatility and self-similarity features of network traffic poses great challenge to network traffic prediction. For this purpose, a novel network traffic prediction scheme based on FARIMA-GARCH model was formulated. A novel method was used to get a zero-mean traffic series by a piecewise two-way CUSUM detection algorithm. Then the fraction difference order was evaluated with precision by the presented bounded search method. After obtaining the model parameters, the prediction algorithm was conducted by using FARIMA-GARCH model. Compared with the traditional method, the limited search method reduces the evaluated error despite a slight computational cost. Then simulation was carded out to verify the accuracy of proposed algorithm with real network traffic. The proposed prediction method keeps the same time complexity with the FARIMA model prediction method, and the simulation result shows that the root mean-square error and relative root mean-square error, which closely resemble the RBF prediction method, is less than FARIMA model prediction method. And the interval estimation and volatility prediction performance is excellent.

关 键 词:FARIMA GARCH CUSUM 流量预测 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象