检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川省可视化计算和虚拟现实重点实验室,成都610068 [2]四川师范大学计算机科学学院,成都610101
出 处:《计算机工程》2012年第13期163-165,168,共4页Computer Engineering
基 金:四川省科技厅重点实验室基金资助项目"可视化计算与虚拟现实"(PJ201102)
摘 要:在分类器训练过程中,无标记数据的引入容易产生噪音,从而降低分类精度。为此,提出一种基于图的置信度估计半监督协同训练算法。利用样本数据自身的结构信息,计算无标记样本所属类别概率。采用多分类器对无标记数据进行置信度估计,以提高无标记数据挑选标准,减少噪音数据的引入。在UCI数据集上的对比实验验证了该算法的有效性。In classifier training process, the introduction of unlabeled data can cause noise data, and it reduces classification accuracy. This paper proposes Confidence Estimation for Semi-supervised Learning based on graph(CESL) algorithm. The algorithm makes use of structure information of sample data to calculate classification probability of unlabeled data explicitly. Combined with multi-classifiers, the algorithm estimates the confidence of unlabeled data implicitly and improves the selection criteria. With dual-confidence estimation, the unlabeled data is selected to update classifiers. Experiments on UCI datasets prove the efficiency of this algorithm.
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.133.37