检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学计算机科学与技术学院,南京210016
出 处:《计算机工程》2012年第13期192-195,198,共5页Computer Engineering
摘 要:针对传统字符特征提取算法中特征不稳定的缺点,提出一种基于正交盖氏矩的特征提取方法。采用支持向量机解决车牌字符识别问题,自动寻找对分类有较好区分能力的支持向量,由此构成的分类器可以最大化类间间隔,达到正确区分类别的目的。实验结果表明,该方法对于实时视频流中的车牌识别能取得理想效果,在解决有限样本、非线性及高维模式识别问题中表现出优越的性能,且具有适应性强和效率高的特点。Aiming at the problem that the character features which are got by traditional feature extraction algorithm are not stable, this paper puts forward a feature extraction method based on orthogonal Gegenbauer moment. By using Support Vector Machine(SVM) method to solve the license plate character recognition problem, SVM can automatically search for classification which has good ability to distinguish between the support vector. The classifier can maximize kind of interval, and distinguish the purpose of the category. Experimental results show that this method can make the ideal effect in real-time streaming video of the license plate identification. In solving nonlinear finite sample, and high dimensional pattern recognition problem, it shows many special superior performance, and has strong adaptability and the characteristics of high efficiency.
关 键 词:盖氏矩 特征提取 字符识别 支持向量机 分类器 模式识别
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3