检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学经济学院
出 处:《数量经济技术经济研究》2013年第4期124-137,共14页Journal of Quantitative & Technological Economics
摘 要:蒙特卡洛分析显示,Phillips等(2011)提出的sup ADF泡沫检验方法对扰动项的异方差较为敏感,尤其是当扰动项方差接近非平稳时存在严重的尺度扭曲,倾向于过度拒绝不存在泡沫的原假设。同时,对于Evans(1991)周期性破灭的泡沫,当泡沫破灭的概率增加时,sup ADF检验的检验势下降较快。本文结合Kapetanios等(2003)关于单位根检验的思想,在指数平滑转移模型的框架下提出了一种新的泡沫检验方法:sup KSS检验。与sup ADF检验相比,sup KSS检验对于扰动项的异方差有一定的改进,同时对于周期性破灭的泡沫和指数平滑转移泡沫具有较稳健的检验势。Phillips et al. (2011) propose a new econometric methodology for testing financial bubbles by a right tailed sup ADF test. The results of Monte Carlo simulations show that sup ADF test is vulnerable to conditionall heteroske- dastic innovations, leading to severe over-rejecting of no bubble hypothesis. More- over, the testing power of sup ADF for periodically collapsing bubbles proposed by Evans (1991) decreases substantially as the bubble collapsing probability increases. We extend Phillips's idea into an ESTAR framework proposed by Kapetanios (2003) to test for bubbles. Sup KSS test proposed in this paper allows for time-va- rying coefficients and indigenizes the explosive behavior of bubbles. Compared with sup ADF test, sup KSS test is less sensitive to heteroskedastic innovations. Moreo- ver, using data generated from Evans, periodically collapsing bubbles and expo- nential smooth transition bubble processes that sup KSS test obtains more robust testing powers.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49