检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵瑞宇[1] 孙首群[1] 吕晓军[2] 刘硕研[2]
机构地区:[1]上海理工大学机械工程学院,上海200093 [2]中国铁道科学研究院电子计算技术研究所,北京100081
出 处:《计算机应用与软件》2013年第3期85-88,共4页Computer Applications and Software
基 金:国家高技术研究发展计划项目(2009AA11Z211);国家自然科学基金项目(50875174);上海市教育委员会重点学科建设项目(J50503);铁道部专项资金支持课题研究项目(J2011X007)
摘 要:针对高铁闸机智能监控行人检测系统中较高的实时性要求,提出一种改进的基于梯度直方图(HOG)特征与AdaBoost分类的行人检测算法。首先对图像样本提取HOG特征,进行Gentle AdaBoost分类训练,得到高检测率的强分类器;然后对待测图像进行垂直边缘预处理,根据行人图像与非行人图像的边缘对称性特征,排除大量非行人窗口;最后对剩余窗口提取HOG特征,依据训练出的AdaBoost分类器检测HOG特征向量,判断窗口是否含有行人。实验结果表明:改进的行人检测算法比原算法计算量少,能够在保证原有准确率的基础上,对图像进行更快的检测,满足高铁闸机行人检测系统的实时性要求。Aiming at high requirements of real-time on pedestrian detection system of turnstile's smart surveillance in high-speed rail,we propose an improved pedestrian detection method which is based on histograms of oriented gradients(HOG) features and AdaBoost classification.First,the features of HOG are extracted from sample images to generate a strong classifier with high detection rate after classifying and training them with Gentle AdaBoost;then the vertical edges of the testing images are pre-processed and a large number of windows without pedestrian will be eliminated according to the edges symmetry property features between the images with and without pedestrian;Finally the HOG features are extracted from the remnant windows and to be detected using the trained AdaBoost classifier to estimate whether the pedestrian can be found out from the windows.Experimental result shows that,the improved pedestrian detection algorithm has less computation load than the former algorithms.And it is faster in image detection as well with same accuracy rate as the former algorithms,therefore the real-time requirement on pedestrian detection system of turnstiles in high-speed rail is able to be satisfied.
关 键 词:铁路运输 边缘对称性 梯度直方图 行人检测 AdaBoost分类
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222