检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广西大学计算机与电子信息学院,南宁530004
出 处:《计算机应用研究》2013年第4期1179-1182,1186,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(61063032);国家教育部人文社会科学研究项目(11YJAZH080)
摘 要:提出使用核K-means聚类算法从样本集中抽取特征向量集来训练SVM,达到减少SVM规模的目的。SVM核函数的选择会影响SVM模型的分类效果,提出将多个非线性映射能力不同的核函数进行线性组合,在特征训练集上构造出组合SVM的半定规划模型,用内点法求解出最优组合系数,得到非线性映射能力更强的半定规划SVM,并用做垃圾标签检测。在UCI数据集上与双层减样支持向量机方法进行比较,实验结果表明,新的垃圾标签检测法提高了识别率,并大幅度减少了训练时间。This paper presented a method.It used kernel K-means clustering algorithm to extract the character vector set from the samples and got the optimal combinatorial coefficients of different functions to construct semi-definite programming SVM with stronger nonlinear mapping ability.Experimental results on UCI datasets show that compared with double-layer reduction method,the new method gives higher accuracy and speeds up obviously.
关 键 词:垃圾标签识别 支持向量机 多核函数组合 半定规划
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188