检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈道君[1] 龚庆武[1] 金朝意[2] 张静[1] 王定美[3]
机构地区:[1]武汉大学电气工程学院,湖北省武汉市430072 [2]南京南瑞继保电气有限公司,江苏省南京市211100 [3]甘肃省电力公司风电技术中心,甘肃省兰州市730050
出 处:《电网技术》2013年第4期974-980,共7页Power System Technology
基 金:中央高校基本科研业务费专项资金资助(201120702020009);教育部博士研究生学术新人奖(5052011207016)~~
摘 要:智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。A higher accuracy of short-term wind farm output prediction is required due to the construction of smart grid and grid-connection of large-scale wind farms. To remedy the defect of support vector regression machine (SVR) that the learning parameter selection of SVR depends on factitious experiences, adaptive disturbance quantum-behaved particle swarm optimization (ADQPSO) algorithm is proposed by adding adaptive premature criterion, mixed disturbance operator and dynamic expansion-contraction coefficient in quantum-behaved particle swarm optimization (QPSO) algorithm, and ADQPSO algorithm is used in optimized selection of learning parameters for SVR. Case study shows that the proposed ADQPSO algorithm possesses such advantages as good global search ability, strong robustness and high computation efficiency, and applying the ADQPSO algorithm to the optimization of the obtained learning parameters of SVR the accuracy of short-term wind power prediction is higher than those by back propagation neural network (BPNN) and radial basis function neural network (RBFNN).
关 键 词:短期风电功率预测 学习参数选择 自适应扰动量子粒子群优化算法 支持向量回归机
分 类 号:TM614[电气工程—电力系统及自动化] TM71
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42