检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子工程学院,合肥230037
出 处:《电子信息对抗技术》2013年第2期19-23,共5页Electronic Information Warfare Technology
摘 要:通过分析传统鉴别分析的"小样本"和"次优性"问题,提出一种改进的二维线性鉴别分析(I2DLDA)算法并用于SAR图像目标特征提取。首先对线性鉴别分析中散度矩阵的构造进行加入权值的改进以缓解次优性问题,然后使用二维线性鉴别分析准则在图像矩阵上进行特征提取。对美国MSTAR计划公开的SAR图像数据的仿真实验结果表明,基于I2DLDA的SAR目标识别方法不仅有效增强了提取特征的可鉴别性,同时也减小了所需的特征维数,降低了运算量,识别性能有了很大的提高,证明了方法的有效性。By analyzing the "small sample size" (SSS) problem and the "inferior" problem of traditional linear discriminant analysis (LDA), a novel image feature extraction technique is proposed which is called improved two - dimensional linear discriminant analysis (I2DLDA). Firstly, the scatter matrices in the discriminant analysis are modified by weighting to relieve the ' inferior' problem. Then, feature matrix is extracted in the image matrix by two-dimensional linear discriminant analysis criterion. Experimental results with MSTAR dataset show that the discrimination of feature is strengthened and also the feature dimensionality and computation complexity are reduced according to the recognition method based on I2DLDA. The better recognition performance demonstrates the effectiveness of the method.
关 键 词:合成孔径雷达 目标识别 线性鉴别分析 “次优性”问题
分 类 号:TN971.1[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90