基于ARMA的微惯性传感器随机误差建模方法  被引量:8

Stochastic error modeling method for micro inertial sensor based on ARMA

在线阅读下载全文

作  者:杜红松[1] 程建华[2] 唐苗苗[2] 

机构地区:[1]海军装备研究院舰船所,北京100073 [2]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001

出  处:《传感器与微系统》2013年第4期54-57,64,共5页Transducer and Microsystem Technologies

基  金:国家自然科学基金资助项目(61104036;61273081);黑龙江省博士后科研启动基金资助项目(LBH-Q10118)

摘  要:针对微惯性传感器随机误差建模效果不理想,影响微惯性组合导航系统性能的问题,提出了采用自回归滑动平均(ARMA)对微惯性传感器随机误差进行建模的方法。通过对随机误差模型应用于微惯性器件误差建模的深入分析,将Yule-Walker方程引入线性预测问题中,实现AR功率谱密度的估计,建立了基于随机过程有理功率谱密度的ARMA模型建立方法,并给出了ARMA建模准确性的LDA验证准则。通过微惯性传感器实测数据,对随机误差建模方法进行了有效性验证。该方法为微惯性器件的随机误差建模和分析提供了一种新的途径。Aiming at problem that the characteristic of the micro inertial integrated navigation system is seriously influenced by effect of stochastic error modeling,a stochastic error modeling method using auto regressive moving average(ARMA) for micro inertial sensor is proposed.Through analysis on application of stochastic error model in micro inertial device error modeling,introducing Yule-Walker equation to linear prediction problems,estimation of AR power spectral density is achieved.ARMA models are set up based on rational power spectral density of stochastic process.Actual data validates the effectiveness of modeling methods.This method provides a new approach for modeling and analysis of stochastic errors.

关 键 词:微惯性传感器 随机误差 自回归滑动平均模型 功率谱分析 

分 类 号:U666.1[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象