基于父子等价剪枝策略的最大频繁项集挖掘  被引量:3

Maximal Frequent Itemset Mining Based on Parent-child Equivalency Pruning Strategy

在线阅读下载全文

作  者:张志刚[1,2] 黄刘生[2] 金宗安[1] 项莉萍[1] 

机构地区:[1]六安职业技术学院信息工程系,安徽六安237158 [2]中国科学技术大学计算机科学与技术学院,合肥230027

出  处:《计算机工程》2013年第4期219-221,225,共4页Computer Engineering

基  金:安徽省高等学校自然科学研究基金资助项目(KJ2012B181)

摘  要:在传统剪枝策略中,具有相同事务集的父子结点搜索空间没有充分剪枝,效率较低。为此,提出父子等价的剪枝策略。采用深度优先搜索集合枚举树,对于父子结点中具有相同事务集的搜索空间进行剪枝,有效地缩小搜索空间,减少频繁项计算的次数,给出基于该剪枝策略的最大频繁项集挖掘算法。实验结果表明,该算法可缩短同一支持度下的最大频繁项集挖掘时间。Incomplete pruning leads to inefficiencies for the search space with the same transaction set in parent-child node according to the traditional pruning strategy. This paper presents a parent-child equivalency pruning strategy which can prune the search space with the same transaction set in parent-child node. It effectively minimizes the search space and reduces the number of frequent items. The new maximal frequent itemset mining algorithm is completed based on new pruning strategy. Experimental results show that the new pruning strategy can shorten the time of mining maximal frequent itemset with the same support.

关 键 词:数据挖掘 最大频繁项集 剪枝策略 最小支持度 深度优先 关联规则 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象