检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学电子科学与工程学院,湖南长沙410073
出 处:《电子学报》2013年第3期502-507,共6页Acta Electronica Sinica
基 金:国家自然科学基金(No.61002026)
摘 要:本文利用Yoyos直观系统模型与随机微分几何,分析特定辐射源识别问题,为该问题建立了一种有意义的几何学描述.通过上述模型及分析,指出辐射源个体所辐射信号的瞬时参数中包含具有内蕴性质的指纹特征信息,且由产生信号的系统低维状态流形决定.扩散映射是一种新兴的流形学习算法,已有研究与实践证明该算法可以在提取高维数据蕴含的低维流形的同时较完整地保持采样点之间的几何性质.本文利用扩散映射的这一良好特性,结合所建立的直观模型,提取信号瞬时参数的扩散特征,用于特定辐射源识别,取得了较好的效果.最后通过外场实验,验证了上述模型与特征的正确性和有效性.An intuitive systemic model based on the systemic Yoyos and stochastic differential geometry is provided for finding a meaningful geometric description of radar specific emitter identification(SEI) in this paper.We show that there is a lower dimensional state manifold which generates signals with intrinsic signatures in every emitter.Geometric significances of the manifold go far towards solving SEI problems.A recently popularized manifold learning technique,called Diffusion Maps,is said to preserve the local proximity among sampling data points by first representing the underlying manifold.So this paper examines SEI using the technique to extract diffusion features of signal instantaneous parameters for experiments on actual intercepted radar signals with several same type emitters.Finally,results illuminate the validity of features and correctness of the proposed model.
分 类 号:TN95[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222