Changes in mean and extreme climates over China with a 2℃ global warming  被引量:28

Changes in mean and extreme climates over China with a 2℃ global warming

在线阅读下载全文

作  者:LANG XianMei SUI Yue 

机构地区:[1]International Centre for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences [2]Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences [3]Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Chinese Academy of Sciences [4]University of Chinese Academy of Sciences

出  处:《Chinese Science Bulletin》2013年第12期1453-1461,共9页

基  金:supported by the National Basic Research Program of China (2012CB955401);the National Natural Science Foundation of China (41175072)

摘  要:Based on a 153-year (1948-2100) transient simulation of East Asian climate performed by a high resolution regional climate model (RegCM3) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario, the potential future changes in mean and extreme climates over China in association with a global warming of 2℃ with respect to pre-industrial times are assessed in this study. Results show that annual temperature rises over the whole of China, with a greater magnitude of around 0.6℃ compared to the global mean increase, at the time of a 2℃ global warming. Large-scale surface warming gets stronger towards the high latitudes and on the Qinghai-Tibetan Plateau, while it is similar in magnitude but somewhat different in spatial pattern between seasons. Annual precipitation increases by 5.2%, and seasonal precipitation increases by 4.2%-8.5% with respect to the 1986-2005 climatology. At the large scale, apart from in boreal winter when precipitation increases in northern China but decreases in southern China, annual and seasonal precipitation increases in western and southeastern China but decreases over the rest of the country. Nationwide extreme warm (cold) temperature events increase (decrease). With respect to the 1986-2005 climatology, the country-averaged annual extreme precipitation events R5d, SDII, R95T, and R10 increase by 5.1 mm, 0.28 mm d -1 , 6.6%, and 0.4 d respectively, and CDD decreases by 0.5 d. There is a large spatial variability in R10 and CDD changes.Based on a 153-year (1948-2100) transient simulation of East Asian climate performed by a high resolution regional climate model (RegCM3) under tile Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario, the potential future changes in mean and extreme climates over China in association with a global warming of 2℃ with respect to pre-industrial times are assessed in this study. Results show that annual temperature rises over the whole of China, with a greater magnitude of around 0.6℃ compared to the global mean increase, at the time of a 2℃ global warming. Large-scale surface warming gets stronger towards the high latitudes and on the Qinghai-Tibetan Plateau, while it is similar in magnitude but somewhat different in spatial pattern between seasons. Annual precipitation increases by 5.2%, and seasonal precipitation increases by 4.2%-8.5% with respect to the 1986-2005 climatology. At the large scale, apart from in boreal winter when precipitation increases in northern China but decreases in southern China, annual and seasonal precipitation increases in western and southeastern China but decreases over the rest of the country. Nationwide extreme warm (cold) temperature events increase (decrease). With respect to the 1986-2005 climatology, the country-averaged annual extreme precipitation events R5d, SDII, R95T, and R10 increase by 5.1 mm, 0.28 mm d^-1, 6.6%, and 0.4 d respectively, and CDD decreases by 0.5 d. There is a large spatial variability in R10 and CDD changes.

关 键 词:中国北方地区 气候变化 全球变暖 平均值 年降水量 区域气候模式 降水事件 专业委员会 

分 类 号:P467[天文地球—大气科学及气象学] X16[环境科学与工程—环境科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象