检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈宏[1] 朱卫兵[1] 张小彬[1] 孙润鹏 郭金鑫
机构地区:[1]哈尔滨工程大学航天与建筑工程学院,黑龙江哈尔滨150001 [2]中国航天科工集团三十一研究所高超声速冲压发动机技术重点实验室,北京100074
出 处:《爆炸与冲击》2013年第1期29-37,共9页Explosion and Shock Waves
基 金:中央高校基本科研业务费项目(HEUCF100203);高超声速冲压发动机技术重点实验室开放基金项目(20110103006)
摘 要:为了克服原始虚拟流方法(ghost fluid method,GFM)在处理激波与大密度比流体-流体(气-水)界面相互作用时遇到的困难,采用真实虚拟流法(real ghost fluid method,RGFM)处理流体界面附近的虚拟点,结合HLLC(Harten-Lax-Van Leer with contact discontinuities)格式求解Euler方程,采用五阶WENO(weigh-ted essentially nonoscillatory)格式求解level set输运方程。通过一维和二维算例的物质界面捕捉研究,证明RGFM在处理小密度比界面问题时优于GFM,同时RGFM还可用于求解激波与大密度比物质界面相互作用问题。计算表明,将RGFM引入到本文算法中,可精确捕捉到激波与界面(气-气、气-水界面)相互作用的变化细节,包括大密度比界面的剧烈变形和破碎,并具有较高的计算分辨率。In order to avoid the difficulties of the original ghost fluid method(GFM) in simulating the interaction between shock wave and material(fluid-fluid,gas-water) interface with large density ratio,the real ghost fluid method(RGFM) was adopted to treat the ghost points near the material interface,the HLLC(Harten-Lax-Van Leer with contact discontinuities) Riemann solver was applied to solve the Euler equations,and the fifth-order weighted essentially nonoscillatory(WENO) scheme was implemented to solve the level set equation.Numerical simulations were carried out for one-dimensional and two-dimensional examples,respectively.Simulated results show that the RGFM is superior to the GFM,and the images by the RGFM can display more details of the interaction between shock wave and material interface,which include the distinct deformation and fragmentation of the material interfaces with high density ratios.
关 键 词:流体力学 真实虚拟流法 HLLC 多介质流 levelset方法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7