检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈君[1] 彭小奇[1,2] 宋彦坡[1] 刘征[1] 唐秀明[3]
机构地区:[1]中南大学信息科学与工程学院,湖南长沙410083 [2]湖南第一师范学院信息科学与工程系,湖南长沙410205 [3]湖南科技大学信息与电气工程学院,湖南湘潭411201
出 处:《电机与控制学报》2013年第3期105-109,共5页Electric Machines and Control
基 金:国家自然科学基金重点项目(61134006);国家自然科学基金青年项目(61105080);湖南省自然科学基金青年项目(11JJ4057);湖南省教育厅资助项目(10C0696)
摘 要:为提高支持向量机的泛化能力,根据统计学习理论中学习机推广能力的界和VC维理论,提出了一种同时以特征空间中样本数据分布半径最小化和类间间隔最大化为优化目标的支持向量机模型。通过合理设计其目标函数,将该支持向量机的建模问题转化为二次规划问题,从而可以采用与传统SVM相似的算法快速实现。用UCI数据库中的部分数据进行了仿真,实验证明与传统的SVM相比,在分类准确度不降低,且有所提高的基础上,使其支持向量的数目得到减少;在支持向量数目相近的情况下,预测精度得到提高。体现出更强的泛化能力。In order to improve the generalization capability of support vector machine,a new support vector machine with minimum-data distribution and maximum-margin in feature space was presented based on the bounds for the generalization error in machine-learning and the VC dimension theory.The support vector machine(SVM) optimization problem here was treated as a quadratic programming problem after reformulating a reasonable objective function,so the problem was solved by applying algorithms similar to that of the traditional SVM.Simulation using UCI datasets shows that compared to the traditional SVM,the improved SVM classifier reduces the support vectors number with the same or even higher prediction accuracy;on the other hand,it improves the prediction accuracy with similar support vectors number.The simulation results show that the proposed SVM have more generalization ability.
分 类 号:TF181[冶金工程—冶金物理化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28