基于贝叶斯阈值估计的曲波域自适应随机噪声衰减  被引量:12

The self-adaptive random noise attenuation in curvelet domain based on Bayes estimation

在线阅读下载全文

作  者:刘伟[1] 曹思远[2,3] 王征[1] 王亚亮[1] 董水利[1] 

机构地区:[1]中海油田服务股份有限公司物探事业部,天津300451 [2]中国石油大学(北京)油气资源与探测国家重点实验室,北京102249 [3]中国石油大学(北京)CNPC物探重点实验室,北京102249

出  处:《石油物探》2013年第2期115-120,111,共6页Geophysical Prospecting For Petroleum

基  金:国家科技重大专项课题(2011ZX05024-001-01);国家自然科学基金(41140033)项目共同资助

摘  要:与小波变换相比,曲波变换可以更好地表达曲线奇异函数的异向性。根据曲波变换对于光滑且二阶连续可微函数所具有的最优逼近性能,结合贝叶斯理论,给出了基于曲波域的自适应阈值去噪方法。通过对合成地震记录及实际地震数据的处理,验证了该方法的有效性。结果表明,与传统小波阈值法相比,基于贝叶斯阈值估计的曲波域自适应去噪方法不仅可以很好地衰减随机噪声,有效提高地震资料的信噪比,而且能够较好地保持有效信号。The curvelet transform can represent anisotropy of curved singular function better than wavelet transform.According to the optimal approximation property of the curvelet transform for smoothing and second-order continuous differentiable singular functions,an adaptive thresholding denoising method for combining the improved curvelet transform with Bayesian theory is proposed.The processing results of seismogram and real seismic data verify that curvelet transform for self-adaptive random noise attenuation based on Bayes estimation can not only attenuate random noise and effectively improve S/N in seismic data but also well preserve effective signal compared with conventional wavelet transform threshold method.

关 键 词:曲波变换 小波变换 随机噪声衰减 贝叶斯估计 自适应阈值 

分 类 号:P631.4[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象