检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北财经大学数学与数量经济学院,中国科学院预测科学研究中心东北分中心,辽宁大连116025
出 处:《数学的实践与认识》2013年第7期12-21,共10页Mathematics in Practice and Theory
基 金:国家自然科学基金面上项目(71171035);国家社会科学基金青年项目(11CJY008);辽宁省高校创新团队支持计划资助(WT2011004)
摘 要:运用DEA-SBM模型测度了碳排放约束下1999年-2010年中国30省、市、区及四大区域的全要素能源效率,并利用变异系数及K-Means聚类分析考察了区域全要素能源效率的差异,最后对各省份及区域的节能减排潜力进行了测度分析.研究结果表明:不考虑碳排放约束的各省份的全要素能源效率被高估,绿色能源效率总体均值呈现U型趋势;绿色能源效率的区域格局按照由东向西递减.四大区域的变异系数差异较大,均呈现收敛趋势;由聚类分析结果可知处于高效区的省份全部为东部沿海省份;中效区的省份大多是中部省市及东北老工业基地,而西部区域的各省份多数处于低效区;不同省份的节能减排的潜力差异较大,西部区域的节能减排潜力最高,其次为中部和东北部,东部的节能减排潜力最低.This paper measured total factor energy efficiency of 30 province, city, district and four regional from 1999 to 2010 in China based on DEA-SBM model ,and using the coefficient of variation and K-Means cluster analysis examined the regional total factor energy efficiency differences, at the end of each provinces and regions of the energy saving and emission reduction potential of the measure analysis. Research results show that: without considering the carbon emission constraints in the provinces of total factor energy efficiency is overestimated, green energy efficiency presents U trend;Green energy efficiency according to the regional pattern of decrease from east to west. The four major regions of the coefficient of variation is difference, showed convergence trend; By the clustering analysis results in the high efficiency area of the province is the eastern coastal province ; The Medium efficiency of the province are mostly central provinces and cities in the northeast, while most of province in western is low efficiency; The potential of energy-saving and emission-abating in western is highest, followed by central and northeastern, eastern is minimum.
关 键 词:全要素能源效率 Undesirable—SBM模型 变异系数 聚类分析
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222