检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, College of Information Science and Technology
出 处:《Acta Mathematica Sinica,English Series》2013年第3期557-570,共14页数学学报(英文版)
基 金:Supported by National Natural Science Foundation of China (Grant Nos. 11161016 and 10861006);Natural Science Foundation of Hainan Province of China (Grant No. 112004)
摘 要:Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The pebbling number f(G) is the smallest number m such that for every distribution of m pebbles and every vertex v, a pebble can be moved to v. A graph G is said to have the 2-pebbling property if for any distribution with more than 2f(G) - q pebbles, where q is the number of vertices with at least one pebble, it is possible, using pebbling moves, to get two pebbles to any vertex. Snevily conjectured that G(s, t) has the 2- pebbling property, where G(s, t) is a bipartite graph with partite sets of size s and t (s 〉 t). Similarly, the ~,pebbling number fl(G) is the smallest number m such that for every distribution of m pebbles and every vertex v, ~ pebbles can be moved to v. Herscovici et al. conjectured that fl(G) ≤ 1.5n + 8l -- 6 for the graph G with diameter 3, where n = IV(G)I. In this paper, we prove that if s ≥ 15 and G(s,t)Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The pebbling number f(G) is the smallest number m such that for every distribution of m pebbles and every vertex v, a pebble can be moved to v. A graph G is said to have the 2-pebbling property if for any distribution with more than 2f(G) - q pebbles, where q is the number of vertices with at least one pebble, it is possible, using pebbling moves, to get two pebbles to any vertex. Snevily conjectured that G(s, t) has the 2- pebbling property, where G(s, t) is a bipartite graph with partite sets of size s and t (s 〉 t). Similarly, the ~,pebbling number fl(G) is the smallest number m such that for every distribution of m pebbles and every vertex v, ~ pebbles can be moved to v. Herscovici et al. conjectured that fl(G) ≤ 1.5n + 8l -- 6 for the graph G with diameter 3, where n = IV(G)I. In this paper, we prove that if s ≥ 15 and G(s,t)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239