Nb_5 N_6 microbolometer arrays for terahertz detection  被引量:1

Nb_5 N_6 microbolometer arrays for terahertz detection

在线阅读下载全文

作  者:涂学凑 康琳 刘新华 毛庆凯 万超 陈健 金飚兵 吉争鸣 许伟伟 吴培亨 

机构地区:[1]School of Electronic Science and Engineering, Nanjing University

出  处:《Chinese Physics B》2013年第4期218-221,共4页中国物理B(英文版)

基  金:Project supported by the National Basic Research Program of China (Grant No. 2011CBA00107);the National High-Technology Research Development Program of China (Grant No. 2011AA010204)

摘  要:A novel room-temperature microbolometer array chip consisting of an Nb5N6 thin film microbridge and a dipole planar antenna, which is used as a terahertz (THz) detector, is described in this paper. Due to the high-temperature coefficient of the resistance of the Nb5N6 thin film, which is as high as –0.7% K-1 , such an antenna-coupled microbolometer is ideal for detecting signals in a frequency range from 0.22THz to 0.33THz. The dc responsivity, calculated from the measured I–V curve of the Nb5N6 microbolometer, is about –760 V/W at a bias current of 0.19mA. A typical noise voltage as low as 10 nV/Hz 1/2 yields a low noise equivalent power (NEP) of 1.3×10-11W/Hz 1/2 at a modulation frequency above 4kHz, and the best RF responsivity, characterized using an infrared device measuring method, is about 580V/W, with the corresponding NEP being 1.7×10-11W/Hz 1/2 . In order to further test the performance of the Nb5N6 microbolometer, we construct a quasi-optical type receiver by attaching it to a hyperhemispherical silicon lens, and the result is that the best responsivity of the receiver is up to 320V/W. This work could offer another way to develop a large scale focal-plane array in silicon using simple techniques and at low cost.A novel room-temperature microbolometer array chip consisting of an Nb5N6 thin film microbridge and a dipole planar antenna, which is used as a terahertz (THz) detector, is described in this paper. Due to the high-temperature coefficient of the resistance of the Nb5N6 thin film, which is as high as –0.7% K-1 , such an antenna-coupled microbolometer is ideal for detecting signals in a frequency range from 0.22THz to 0.33THz. The dc responsivity, calculated from the measured I–V curve of the Nb5N6 microbolometer, is about –760 V/W at a bias current of 0.19mA. A typical noise voltage as low as 10 nV/Hz 1/2 yields a low noise equivalent power (NEP) of 1.3×10-11W/Hz 1/2 at a modulation frequency above 4kHz, and the best RF responsivity, characterized using an infrared device measuring method, is about 580V/W, with the corresponding NEP being 1.7×10-11W/Hz 1/2 . In order to further test the performance of the Nb5N6 microbolometer, we construct a quasi-optical type receiver by attaching it to a hyperhemispherical silicon lens, and the result is that the best responsivity of the receiver is up to 320V/W. This work could offer another way to develop a large scale focal-plane array in silicon using simple techniques and at low cost.

关 键 词:Nb5N6 MICROBOLOMETER RESPONSIVITY noise equivalent power 

分 类 号:TN215[电子电信—物理电子学] TP212[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象