动作预测在多机器人强化学习协作中的应用  被引量:2

Application of action prediction in multi-robot reinforcement learning cooperation

在线阅读下载全文

作  者:曹洁[1] 朱宁宁[1] 

机构地区:[1]兰州理工大学计算机与通信学院,兰州730050

出  处:《计算机工程与应用》2013年第8期257-260,共4页Computer Engineering and Applications

摘  要:在多机器人系统中,协作环境探索的强化学习的空间规模是机器人个数的指数函数,学习空间非常庞大造成收敛速度极慢。为了解决这个问题,将基于动作预测的强化学习方法及动作选择策略应用于多机器人协作研究中,通过预测机器人可能执行动作的概率以加快学习算法的收敛速度。实验结果表明,基于动作预测的强化学习方法能够比原始算法更快速地获取多机器人的协作策略。In multi-robot systems, the spatial scale of reinforcement leaming of the cooperation environment exploration is made up of the exponential function of the number of robots. And the enormous learning space results in the slow convergence rate. To solve this problem, a prediction-based reinforcement learning algorithm and the action selection strategy are applied to the research on multi-robot cooperation. By predicting the probability of actions that other robots may execute, the convergence rate of this algorithm is accelerated. The experimental results show that reinforcement learning algorithm based-on action prediction can achieve the multi-robot' s cooperation strategy much faster, compared to the primitive algorithm.

关 键 词:动作预测 强化学习 多机器人协作 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象