检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州城市学院数学学院,兰州730070 [2]西北师范大学数学与统计学院,兰州730070
出 处:《兰州大学学报(自然科学版)》2013年第2期241-244,248,共5页Journal of Lanzhou University(Natural Sciences)
基 金:甘肃省自然科学基金项目(1107RJZA229)
摘 要:引入拟-McCoy环和拟-弱McCoy环并研究其性质.讨论拟-McCoy环和拟-弱McCoy环之间的关系.证明了任意环R上的上三角矩阵环T_n(R)(n≥2)及交换的拟-弱McCoy环R上的n阶全矩阵环M_n(R)是拟-弱McCoy环.对于环R的理想I,当I(?)nil(R)时,若R/I是拟-弱McCoy环,则R是拟-弱McCoy环.同时也证明了R是拟-弱McCoy环当且仅当△^(-1)R是拟-弱McCoy环.Quasi-McCoy rings and quasi-weak McCoy rings were introduced and their properties investigated. The relation between quasi-McCoy rings and quasi-weak McCoy rings was also discussed and it is shown that the upper triangular matrix rings Tn (R)(n ≥ 2) over any ring R and n-by-n full matrix rings Mn (R) over commutative quasi-weak McCoy rings R are quasi-weak McCoy. For an ideal I of a ring R satisfying I C nil(R), if R/I is quasi-weak McCoy, then R is quasi-weak McCoy. It is also shown that R is quasi-weak McCoy if and only if △-1R is quasi-weak McCoy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.85