检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘忠宝[1]
机构地区:[1]中北大学电子与计算机科学技术学院,太原030051
出 处:《计算机应用》2013年第5期1432-1434,1455,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(61202311);山西省自然科学基金资助项目(2012011011-3)
摘 要:当前主流特征提取方法主要从全局特征或局部特征出发实现降维。为了能充分反映样本的全局特征和局部特征,提出基于图的人脸特征提取方法。该方法首先通过对训练样本进行学习得到最佳投影方向,该方向保证投影后的样本类内紧密而类间松散;然后将测试样本映射到最佳投影方向上并利用最近邻分类器进行样本类属判定。标准人脸库上的比较实验结果证明了所提方法的有效性。Current feature extraction methods are mainly based on global or local features. In order to fully utilize all the sample information, this paper presented Face Feature Extraction based on Graph ( FFEG). At the training stage, the optimal projection was computed by learning the training samples, which guaranteed the samples within classes were close and between classes were far away. At the recognition stage, the test samples were successively mapped onto the optimal projection, and then the nearest neighbor classifier was used for classification and recognition. The experimental results on ORL dataset prove the effectiveness of the proposed method.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28